O NEOLITYCZNYM IMPORCIE SUROWCA BAZALTOWEGO NA TEREN POLSKI ŚRODOWIZNACHODNIEJ

Charakterystyczną cechą rozwoju współczesnej archeologii jest dążenie do możliwie wszechstronnego zbadania dostępnych materiałów źródłowych. Cel ten można realizować jedynie poprzez stałe rozszerzanie zasobu metod badawczych, zapożyczonych głównie z nauk przyrodniczych i ścisłych. Metody przyrodnicze posiadają szczególnie istotne znaczenie w odniesieniu do zagadnień gospodarczych w prahistorii. Bez ścisłej współpracy z przedstawicielami odpowiednich dyscyplin przyrodniczych archeolog nie zdolałby w ogóle podjąć wielu ważnych kwestii z tego zakresu, dotyczących np. gospodarki surowcowej w poszczególnych kulturach i regionach.

W nowszych pracach nad neolitem terenu Polski obserwuje się zasadniczą zmianę koncepcji badawczej. Polega ona na przejściu od wąskiego, tradycyjnego spojrzenia na całokształt materiałów źródłowych (dominacja analizy materiału ceramicznego przy całkowitym pominięciu zróżnicowania surowcowego pozostałych grup wytwórców) do wyczerpującej, wielostronnej (przynajmniej w sensie postulatywnym) analizy wszystkich grup inwentarza ruchomego przy zastosowaniu szeregu metod przyrodniczych, fizykochemicznych i matematycznych (ilościowa i jakościowa analiza chemiczna, analiza spektralna, statystyczna analiza frekwencji, makroskopowa analiza surowców krzemiennych). W ten sposób zgromadzono wiele nowych jakościowo informacji zawartych w zabytku archeologicznym, których uprzednio nie można było odczytać wskutek braku odpowiednich metod. Oceniając współczesny stan badań surowcowych w polskim neolicie, należy podkreślić znaczną postęp w znajomości zróżnicowania surowców krzemiennych. Podjęte ostatnio inicjatywy za-

1 M.in. B. Balcer, Krzemięń świecicchowski w kulturze pucharów lejkowatach. Eksploatacja, obróbka i rozprzestrzenienie, Wrocław 1975; tenże, Position and Stratigraphy of Flint Deposits, Development of Exploitation and Importance of
powiadamają uzyskanie w najbliższej przyszłości podobnego przełomu w zakresie wyrobów bursztynowych. Najbardziej zaniedbane pozostają nadal kwestie związane z surowcami, określonymi w archeologii ogólne i niezbyt precyzyjnie jako kamiennie (w odróżnieniu od krzemieniowych). Znaczenia tej grupy surowcowej w epoce neolitu trudno nie doceniać, obejmuje ona bowiem zarówno podstawowe rodzaje narzędzi (siekierki, topory „roboce”, motyki, dłuta, ciosła, młoty, siekieromłoty), jak i broń (topory „bojowe”, buławki), a więc wyroby zajmujące ilościowo i funkcjonalnie ważne miejsce w źródłach dotyczących neolitu. Uznając konieczność uzupełnienia tej luki i opierając się na metodach petrograficznych, Dział Epoki Kamienna Muzeum Archeologicznego w Poznaniu (A. Prinke) zainicjował w r. 1971 długofalowe badania nad użytkowaniem surowców kamiennych w neolicie Polski środkowowzadziennej. Badaniami objęto wszystkie okazy z terenu Wielkopolski i Kujaw zgromadzone w zbiorach pozańskich (Muzeum Archeologiczne, Katedra Archeologii UAM, Zakład Archeologii Wielkopolski IHKM PAN), a następnie poszerzono je o teren Ziemi Chelmieńskiej. Celem pierwszej fazy badań było określenie rodzaju surowca skalnego, z jakiego wykonane są poszczególne narzędzia kamiennne. Dzięki nawiązaniu współpracy z Katedrą Geologii UAM w Poznaniu (J. Skoczylas) uzyskano 1557 makroskopowych oznaczeń petrograficznych, zweryfikowanych następnie przy zastosowaniu bardziej precyzyjnej metody mikroskopowej analizy płytek cienkich.

Najważniejsze z dotychczas uzyskanych rezultatów to m.in.: a) ustalenie pełnej struktury surowcowej narzędzi neolitycznych z badanego terenu (zarówno dla całej epoki neolitu, jak i dla poszczególnych grup chronologiczno-kulturowych); powstała na tej podstawie lista typów surowców kamiennych liczby 109 kategorii skal; z tego 25 występuje w większych ilościach; b) uchwycenie zmienności zachodzącej w powyższej strukturze w zależności od regionu geograficznego (teren badań podzielono na 6 regionów); c) uchwycenie zmienności tej struktury, uwarunkowanej zróżnicowaniem typologicznym wytwarzanego asortymentu narzędzi;

2 E. Tabaczyńska, Polsko-włoskie badania nad szlakami bursztynowymi, APolski, XIX, 1974, s. 537—540.

d) zgromadzenie wstępnych informacji o kierunkach, czasie i ilości napływu importowanych surowców skalnych z terenów górskich i podgórskich na Niż Polski w epoce neolitu.

Niniejsze opracowanie stanowi kolejny etap realizacji omówionego powyżej przedsięwzięcia. Umożliwiła je zyczliwa pomoc, jakiej udzielił Oddział Wielkopolski Polskiego Towarzystwa Przyjaciół Nauk o Ziemi. Dzięki niej wykonano i przeanalizowano kolejną serię płytek cienkich, pobranych z 16 narzędzi neolitycznych, co pozwoliło zwiększyć ogólną ilość analiz mikroskopowych do 46.

Seria zawiera narzędzia zróżnicowane pod względem typologicznym, chronologiczno-kulturowym i surowcowym (tab. 1); pochodzą one ze stosunkowo zwartego terytorium Kujaw i przyległą do nich północno-wschodniej części Wielkopolski (ryc. 1). Jedenaście okazów należy do cy-

![Ryc. 1. Próba nr 2. Glinno, woj. Poznań. Amfibolit. Widoczna powierzchnia plagio-
klazu z drobnymi łuseczkami serycetu. Powiększenie na ryc. 1—13 około 100 razy
Fig. 1. Epreuve No 2. Glinno, voïev. Poznań. Amphibole. Surface visible de plagioclase avec petites écailles de sérècite. Aggrandissement sur fig. 1—13 à peu près 100 fois

klu kultur naddunajskich (wstępowych); jest wśród nich 6 toporów, 4 siekiery i 1 motyka. Dwa dalsze okazy — siekiera i topór — to również wyroby neolityczne, lecz o bliżej nieokreślonej przynależności chronologiczno-kulturowej. Pojedyncze egzemplarze reprezentują kulturę pucharów lejkowatych (topór) i grupę narzędzi episznurowych z przełomu epoki neolitu i brązu (siekiera).

4 T y c h ż e, Z metodyki badań nad użytkowaniem surowców kamiennych w neolicie, Prz. Arch., XXVI, 1978.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Czeszewo</td>
<td>Piła</td>
<td>KCW-2</td>
<td>1938:124</td>
<td>bazalt</td>
<td>—</td>
<td>Asymetryczny toporek ze skośnie ściętym obuchem; otwór skośny, stożkowaty; na powierzchni ślady pilowania; typ 5 wg K. H. B r a n d t a (1967).</td>
</tr>
<tr>
<td>2</td>
<td>Glinno</td>
<td>Poznań</td>
<td>KCW</td>
<td>1938:23</td>
<td>amfibolit</td>
<td>1—2</td>
<td>Duża, smuklawa, asymetryczna siekiera ze zwężonym i ścinionym obuchem; z boku rozszerzona ku wyszczerbionemu ostru; powierzchnia wyglądza, zwiętrzała.</td>
</tr>
<tr>
<td>4</td>
<td>Kwieciszewo</td>
<td>Bydgoszcz</td>
<td>KCW</td>
<td>1913:10 KFM</td>
<td>amfibolit</td>
<td>—</td>
<td>Gruba, krępca siekiera asymetryczna z zakolonym obuchem; ostrze silnie podcięte.</td>
</tr>
<tr>
<td>5</td>
<td>Parkowo</td>
<td>Piła</td>
<td>KCW</td>
<td>1899:7 TPN</td>
<td>amfibolit</td>
<td>3</td>
<td>Mały toporek asymetryczny z poprzecznym, surowym, ścinionym obuchem; otwór skośny, stożkowaty, blisko obucha.</td>
</tr>
<tr>
<td>7</td>
<td>Poznań-Komandoria</td>
<td>Poznań</td>
<td>KCW-3</td>
<td>1904:273KFM</td>
<td>bazalt</td>
<td>12</td>
<td>Mały, wąski półfabrykat toporka o poprzecznym obuchu; zarys lekko asymetryczny; otwór blisko obucha, niedokończony (wierćlo puste); typ 5 wg K. H. B r a n d t a.</td>
</tr>
<tr>
<td>8</td>
<td>Poznań-Solacz</td>
<td>Poznań</td>
<td>KCW-2</td>
<td>1911:30 KFM</td>
<td>amfibolit</td>
<td>—</td>
<td>Skośny obuch dużego, asymetrycznego toporka; otwór blisko obucha.</td>
</tr>
<tr>
<td>Nr</td>
<td>Miejsce</td>
<td>Kraj</td>
<td>Cykl</td>
<td>Wiek 1</td>
<td>Wiek 2</td>
<td>Gatunek</td>
<td>Opis</td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>9</td>
<td>Radłów</td>
<td>Konin</td>
<td>N/Br</td>
<td>1906:56 KFM</td>
<td>1906:139 KFM</td>
<td>diabaz</td>
<td>Asymetryczna siekiera trapezowata z wąskim, grubym obuchem prostokątnym.</td>
</tr>
<tr>
<td>11</td>
<td>Szadowice</td>
<td>Bydgoszcz</td>
<td>KCW-1</td>
<td>1886:27 TPN</td>
<td>—</td>
<td>amfibolit</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Szadowice</td>
<td>Bydgoszcz</td>
<td>KCW</td>
<td>1901:14b TPN</td>
<td>—</td>
<td>amfibolit</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>Uścikowo</td>
<td>Poznań</td>
<td>KPL</td>
<td>1949:407</td>
<td>1949:1185</td>
<td>bazalt</td>
<td>Gruba, krępa siekiera asymetryczna z grubym obuchem; z boku rozszerzona ku ostrzu; przekrój poprzeczny płaskowypukły.</td>
</tr>
<tr>
<td>14</td>
<td>Źnin</td>
<td>Bydgoszcz</td>
<td>KCW-2</td>
<td>1920:102b TPN</td>
<td>—</td>
<td>diabaz</td>
<td>7–12</td>
</tr>
<tr>
<td>15</td>
<td>Miejscowość nieznana, okolice Szubina</td>
<td>Bydgoszcz</td>
<td>KCW-2</td>
<td>1906:594 KFM</td>
<td>1906:493 KFM</td>
<td>amfibolit</td>
<td>Obuch dużego, masywnego, silnie amorficznego toporka; surowy, spadzisty; otwór skostry, stożkowaty; typ 5 wg K. H. Brandta.</td>
</tr>
<tr>
<td>16</td>
<td>Strzelno</td>
<td>Bydgoszcz</td>
<td>?</td>
<td>—</td>
<td>—</td>
<td>bazalt</td>
<td>Toporek o zarysie pięcioboczny, lekko asymetryczny, z szerokim, acen trycznym otworem i stępnym ostrzem; krawędzie boczne facetowane.</td>
</tr>
</tbody>
</table>

Objaśnienia skrótów: KCW — kultura cyklu wstępowego, KPL — kultura pucharów lejkowatych, N/Br — przelom neolitu i wczesnej epoki brązu (grupy epizykurowe)
WYNIKI BADAN MIKROSKUPOWYCH

Badaniom mikroskopowym w świetle przechodzącym poddano 16 płytek cienkich, dla których określono struktury, tekstury, skład mineralny oraz wykonano analizy mikrometryczne składników, umożliwiające poznanie ich procentowego udziału objętościowego w danej skale. Stwierdzono obecność 8 amfibolitów, 6 bazaltów i 2 diabazów. Procentowe stosunki objętościowe poszczególnych mineralów w zbadanych amfibolitach przedstawia tab. 2.

Tabela 2
Wyniki analiz mikroskopowych amfibolitów w % objętościowych

<table>
<thead>
<tr>
<th>Minerały</th>
<th>Numer próby</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Plagioklaz</td>
<td>39,44</td>
</tr>
<tr>
<td>Amfibol</td>
<td>30,62</td>
</tr>
<tr>
<td>Kwarc</td>
<td></td>
</tr>
<tr>
<td>Syllimanit</td>
<td></td>
</tr>
<tr>
<td>Tlenki Fe</td>
<td>9,51</td>
</tr>
<tr>
<td>Biotyt</td>
<td>11,13</td>
</tr>
<tr>
<td>Chloryt</td>
<td></td>
</tr>
<tr>
<td>Epidot</td>
<td>2,32</td>
</tr>
<tr>
<td>Tytanit</td>
<td></td>
</tr>
<tr>
<td>Akcesoryczne</td>
<td>0,72</td>
</tr>
<tr>
<td>Granat</td>
<td>2,08</td>
</tr>
<tr>
<td>Andaluzyt</td>
<td></td>
</tr>
<tr>
<td>Wtórne</td>
<td>1,59</td>
</tr>
</tbody>
</table>

Zbadane amfibolity mają różne struktury. W próbach nr 5 i 10 stwierdzono strukturę nematoblastyczną z przejściem do poikiloblastycznej, a w próbie nr 5 ponadto fibroblastyczną. Najczęściej jednak amfibolity posiadają struktury zbliżone do granatoblastycznych (nr 2, 4, 5, 12, 15). Tekstura amfibolitów jest kierunkowa i równoległa (ryc. 2), chociaż miejscaowo częściowo bezładna (prób nr 2, 5, 12, 15).

We wszystkich próbach, z wyjątkiem nr 2 i 5, w składzie mineralnym wyraźnie przeważają amfibole. Na podstawie kąta pomiaru osi optycznych χ/γ zbliżonym do 20° zdolano zidentyfikować amfibol jako hornblendę zwyczajną (próby nr 2, 4, 5, 12, 15). W przypadku próby nr 10 stwierdzono występowanie amfibolu z szeregu kumingtonitu (z/γ : 12,1—20°), a w próbie nr 11 — żelazistego aktynowitu (z/γ : 12,4—19,2°). Amfibole mogą tworzyć własne, drobne laminy, zbudowane z niewielkich, bezładnie ułożonych słupków (ryc. 2, 4, 5, 12). Laminy opływają zazwyczaj duże poikiloblasty skaleniowe (próby nr 10, 11; ryc. 6).

Autorzy składają serdeczne podziękowanie p. mgr Barbarze Wojnar z Zakładu Nauk Geologicznych PAN we Wrocławiu za konsultację i oznaczeń mikroskopowych.
Plagioklazy wykształcone są w formie ziarn o zarysach ksenomorficznych, rzadziej zbliżają się pokrojem do tabliczkowatych. Z reguły są one polisyntetycznie zbliżone wąg prawa albitowego (próby nr 2, 4, 8, 10) lub peryklinowego (nr 2, 5, 15). Często obserwuje się kombinację obu tych praw w obrębie jednego okazu. Spotyka się też połączenie prawa albitowego z karlsbadzkim (nr 2, 5). Obok łupliwości skaleniowej, w pojedynczych okazach obserwuje się również spekания nieprawidłowe. Większość plagioklazów odznacza się świeżym wyglądem i posiada ostre, wyraźne prążki bliźniczne, chociaż powierzchnia tych mineralów usiana jest drobnymi łuseczkami silnie dwójłomnymi serycytu (ryc. 1). Na podstawie kąta wygaszania w przekroju prostopadłym do x określono zawartość cząsteczki An (kąt 010/a' = +15°), co odpowiada oligoklazowi. W próbie nr 15 zawartość cząsteczki An wynosi natomiast 50%. Plagioklasy wraz z kwarcem budują jasne warstewki w skale (ryc. 3).

Trzecim, po amfibolach i plagioklazach, składnikiem najczęściej i najliczniej występującym w amfibolitach są tlenki żelaza. Pojawiają się one w formie nieregularnych grudek lub listewek. Niektóre zarysy ich są automorficzne. W próbie nr 5 zdolno wyróżnić magnetyt czarny i nieprzezroczysty, polyskujący metalicznie w świetle ukośnie odbitym. Wyroźniiono również hematyt, przeświecający na brzegach brunatnawo, a także leukoksen, obserwowany w świetle ukośnie odbitym jako biały nalot.

Kwarc wykształcony jest przeważnie w formie pojedynczych ziarn, wygaszających smużyście światło. Niektóre tworzy on mozaikowe sku-
pienia w formie gniazd i krótkich soczewek (próby nr 4, 5, 8, 10, 11). Biotyt tworzy pojedyncze blaszki o wyraźnie widocznej łupliwości i typowych barwach interferencyjnych. W próbie nr 2 biotyt występuje w znacznej ilości (11,13%). Jest on intensywnie pleochroiczny i tworzy

Fig. 3. Epreuve No 5. Parkowo, voïev. Piła. Amphibole. Grains de plagioclases et de quartz construisant de claires pelouses dans le roc

Fig. 4. Epreuve No 11. Szadłowice, voïev. Bydgoszcz. Amphibole. Syllimanite sous forme d'agrégats fibrolithiques de taupe avec oxyde de fer
zrosty z chlorytem. Syllimanit występuje jedynie w próbach nr 8, 10 i 11, tworząc samodzielne laminy. Wykształcony jest w postaci pilśniowych agregatów fibrolitowych (ryc. 4). Minerał ten cechuje się silną dwójłomnością i reliefem, jest niepleochroiczny, choć agregaty fibrolitowe są wy-

Fig. 5. Epreuve No 12. Szadłowice, voïev. Bydgoszcz. Amphibole. Aggrégat de grains de hornblende visible. Nikole II

Fig. 6. Epreuve No 15. Localité inconnue, environs de Szubin, voïev. Bydgoszcz. Amphibole. Poikiloblastes de plagioclases et hornblende ordinaire visibles. Nikole II
raźnie zabarwione na kolor żółto brunatny. Spotyka się w nich znaczną ilość żelaza. Syllimanit powstał z przeobrażenia biotytu.

Epidot występuje w niewielkich ilościach pod postacią ciemnych lamin w asocjacji z amfibolem; jedynie w próbie nr 5 tworzy 6,37% objętości skały. W próbach nr 4, 12 i 15 epidot wykształcony jest w postaci nieregularnych ziarenek i grudek. Tytanit tworzy nieforemne grudki, najczęściej przeobrażone w leukoksen. W niewielkich ilościach występują również minerały akcesoryczne, tj. granat, rutil, andaluzyt i apatyt oraz minerały wtórne (chloryt i kalcyt).

Inaczej natomiast przedstawiają się stosunki objętościowe w diabazach (tab. 3).

Tabela 3

Wyniki analiz mikrometrycznych diabazów w % objętościowych

<table>
<thead>
<tr>
<th>Minerały</th>
<th>Numer próby</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Plagioklasy</td>
<td>51,93</td>
</tr>
<tr>
<td>Pirokseny</td>
<td>24,35</td>
</tr>
<tr>
<td>Oliwiny</td>
<td>—</td>
</tr>
<tr>
<td>Tlenki Fe</td>
<td>12,09</td>
</tr>
<tr>
<td>Minerale z grupy</td>
<td>—</td>
</tr>
<tr>
<td>serpentytu</td>
<td>—</td>
</tr>
<tr>
<td>Biotyt i serycyt</td>
<td>—</td>
</tr>
<tr>
<td>Amfibole</td>
<td>8,56</td>
</tr>
<tr>
<td>Zeolity</td>
<td>2,09</td>
</tr>
<tr>
<td>Akcesoryczne</td>
<td>0,98</td>
</tr>
</tbody>
</table>

Badane diabazy mają strukturę ofitową (ryc. 7) i teksturę zbłąt, bezładną. Plagioklasy reprezentowane są przez duże, tabliczkowate okazy (ryc. 8), rzadko posiadające pokrój listewkowaty (ryc. 9). Przeważają zbliżnaczenia albitowe; niekiedy można obserwować kombinacje prawa zbliżnaczego albitowego z peryklinowym (ryc. 10). Większość plagioklazów wykazuje dodatkową siatkę nieregularnych spękąń, podkreślona wtórnymi łyszątkami. Duże, tabliczkowate okazy uległy zazwyczaj serycytazacji. Spotyka się w nich igielkowate wrostki apatytu i mikrolityczne wrostki szkliwa. Omawiane plagioklasy zbliżone są składem do plagioklazów z pogranicza labradoru i bytownitu. Tlenki żelaza występują w formie dużych ziarn; kształty ich są zwykle nieregularne, od tabliczkowatych, niekiedy wydłużonych, poprzez zaokrąglone grudki, do form szkieletowych (ryc. 11). Niektóre okazy są, przynajmniej częściowo, amorficzne.

Oliwiny tworzą duże, bardzo silnie skorodowane ziarna z głębokimi zatokami korozjnymi, w które wnikają plagioklasy. Na granicy z plagioklazami występują obwodki kalypitowe (ryc. 12). Szczeliny pęknięć w oliwach wypełniane są tlenkami żelaza, które podkreślają też zarysy

Fig. 7. Epreuve No 14. Żnin, voïev. Bydgoszcz. Diabase. Structure ophite de la diabase, marquée par de grands listels en plagioclases entre lesquels se trouvent de minuscules olivines et pyroxènes

Fig. 8. Epreuve No 14. Żnin, voïev. Bydgoszcz. Diabase. Visible acabit en tablettes de plagioclase

Fig. 9. Epreuve Nr 14. Żnin, voïev. Bydgoszcz. Diabase. Placement radial de plagioclases à listels

Fig. 10. Epreuve Nr 14. Żnin, voïev. Bydgoszcz. Diabase. Visible: grain en tablettes de plagioclase avec deux systèmes de raies jumelles polysynthétiques suivant la loi albite et péricuneiforme

Fig. 11. Epreuve No 14. Żnin, voïev. Bydgoszcz. Diabase. Visible: grain de magnétite coroné à phase quasi squelettique

Fig. 12. Epreuve No 14. Żnin, voïev. Bydgoszcz. Diabase. Visible: grains d’olivines crevés. Oxydes de fer dans les fissures. Tout près du plagioclaie s’est formée par réaction une bordure blanche de kelyphyte

Omówione amfiboity i diabazy nie dostarczyły danych, na podstawie których można by wnosić o ich południowym pochodzeniu. Natomiast znaczny udział tych skał wśród eratycznych skał ciemnych Niżu Polskiego skłania do stwierdzenia, że właśnie narzutowe, północne amfibolicy i diabazy stanowiły surowiec do produkcji badanych narzędzi neolitycznych.

Nieco odmiennie przedstawia się zagadnienie pochodzenia surowca skalnego w przypadku wyrobów z bazalu. Procentowe stosunki objętościowe minerałów w zbadanych próbkach bazaltów przedstawia tab. 4.

Tabela 4

<table>
<thead>
<tr>
<th>Minerały</th>
<th>Numer próby</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Plagioklasy</td>
<td>57,374</td>
</tr>
<tr>
<td>Pirokseny</td>
<td>19,151</td>
</tr>
<tr>
<td>Oliwiny</td>
<td>11,771</td>
</tr>
<tr>
<td>Iddyngsyty</td>
<td>—</td>
</tr>
<tr>
<td>Biotyty</td>
<td>—</td>
</tr>
<tr>
<td>Nefelinyn</td>
<td>3,087</td>
</tr>
<tr>
<td>Akcesoryczne</td>
<td>—</td>
</tr>
<tr>
<td>Magnetyt</td>
<td>8,617</td>
</tr>
<tr>
<td>Szkliwo</td>
<td>—</td>
</tr>
</tbody>
</table>

W badanym zbiorze stwierdzono obecność dwóch bazaltów plagioklazowo-nefelinowych (nr 1 i 3) i czterech bazaltów plagioklazowych (nr 6, 7, 13, 16). Ich struktura jest ofitowa (nr 6, 13, 16) lub porfirowata (nr 1, 3, 7), a tekstura — zbita i bezładna. Jego krystalty określono jako zasadowy andezyn — kwaśny labrador (nr 13) lub labrador (nr 1) i bytownit (nr 6). Ziarna plagioklazów odznaczają się świeżym wyglądem; prążki bliźniczce są ostre i wyraźne. Występują zблиżenia typu albitowego (nr 1, 6, 7, 13, 16) i albitowo-peryklinowego (nr 1, 13). Pokrój kryształów jest listekowaty, zbliżony niekiedy do igiełkowatego. Pirokseny wypeł-
niają wolne przestrzenie między listewkowatymi plagioklazami. Są to augity bazaltowe. Jedynie w próbie nr 7 stwierdzono duże prakryształy z wyraźną budową pasmową i klepsydrową, odpowiadającą aigitom zwy-
yczajnym i tytanowym (ryc. 13). Oliwiny, z wyjątkiem próby nr 1, występują raczej w niewielkich ilościach. Tworzą one nieforemne ziarna i wykazują jedynie pewną tendencję do tworzenia ziarn o zarysach idio-
morficznych. We wszystkich kryształach zauważyć można proces iddynsy-
sytyzacji, postępujący od partii brzeżnych ku średkowi; niekiedy obej-
muje on całe ziarna. Częste są pseudomorfozy iddyngsytu oraz pseudomor-
fozy serpentynu po oliwinie (nr 1, 7). Grudki tlenków żelaza — głównie magnetytu, rzadziej ilmenitu — występują w dużych ilościach w obrębie tła skalnego. Niekiedy wykazują one prawdziwe, automorficzne zarysy, najczęściej jednak tworzą kształty nieregularne. Nefelin jest całkowicie
ksenomorficzny; występuje w nieznacznych ilościach i wypełnia prze-
strzenie pomiędzy poszczególnymi składnikami. Stwierdzono również mi-
minimalne ilości szkliwa — najczęściej seladonitu i amfibolu oraz minera-
lów wtórnym — apatytu i kalcytu.

Fig. 13. Epreuve No 7. Poznań-Komandoria. Basalte. Visible: précrystal de pyroxène de construction en clepsydre

WNIOSKI

Ze względu na niewielką liczebność omawianej serii zabytków, wyniki
analizy mikroskopowej mogą naświetlić tylko niektóre z wymienionych
na wstępie aspektów problematyki petroarcheologicznej. Spośród nich
zasadnicze znaczenie dla archeologicznych badań nad neolitem ma kwestia
Ryc. 14. Lokalizacja neolitycznych narzędzi kamiennych z terenu Kujaw i północno-wschodniej Wielkopolski poddanych badaniom mikroskopowym:

A — narzędzia z amfiboliu; B — z bazaltu; C — z diabazu

Fig. 14. Localisation des outils néolithiques en pierre provenants du territoire de la Couravie (Kujawy) et du Nord-Est de la Grande Pologne soumis aux examens microscopiques:

A — outils en amphibole; B — en basalte; C — en diabase

pochodzenia surowców skalnych, używanych do produkcji narzędzi gładzonych z tej epoki. Przed uzyskaniem niniejszych wyników i opierając się jedynie na oznaczeniach makroskopowych autorzy zakładali teoretycznie trzy możliwości zaopatrywania się neolitycznych wytwórców w surowce kamienne: 1) zbieranie miejscowych materiałów narzutowych (eratyków) pochodzenia fennoskańskiego, występujących obfite na całym obszarze Niżu, zarówno na powierzchni, jak i we wtórnych złożach morenowych; 2) import wysokowartościowych surowców z terenów skałonośnych, położonych, ogólnie biorąc, na południe od Niżu (obszary podgórskie i górskie południowej Polski, południowo-wschodnich Niemiec, Czechosłowacji i zachodniej Ukrainy); 3) eksploatacja nielicznych złóż
pierwotnych, leżących na terenie Niżu (głównie — skrzemionkowanych ilów pstrych poznańskich).

Kwestiami o pierwszoplanowym znaczeniu dla poznania neolitycznej wytwórczości kamieniarskiej są: przybliżone choćby określenie wzajemnych stosunków ilościowych między trzema wymienionymi rodzajami surowców oraz określenie kierunków, czasu i intensywności napływu surowców importowanych. Zakłasyfikowanie danej skały jako importu z obszarów południowych polega w praktyce, w przypadku Niżu Polskiego, na wykluczeniu możliwości jej eratycznego, tj. skandynawskiego pochodzenia. Przedstawione powyżej dane potwierdzają obecność w neolicie Wielkopolski tego rodzaju importów, a także umożliwiają powiązanie surowca części spośród badanych narzędzi z konkretnymi złożami skalnymi. W badanej serii rozpoznano mikroskopowo 6 okazów surowców importowanych z południa. Są to bazalty oliwinowe, w tym 2 okazy odmiany plagioklazowo-nefelinowej.

Znane są trzy obszary występowania bazaltów: Skania, bazaltowy łuk środkowoeuropejski, sięgający od okolic Ostrawy do Holandii i Francji oraz masyw wołyńsko-ukraiński (dorzecze Horynia i okolice miasta Równe). J. Hesemann opisuje 80 izolowanych wzniesień bazaltowych, położonych na terenie Skanii. Pod względem petrograficznym są to bazalty plagioklazowe, nefelinowe, leucytowe i szkliste. Autor ten nie wymienia bazaltów plagioklazowo-nefelinowych.

W dorzeczu Horynia stwierdzono występowanie 14 stanowisk bazaltów. W świetle badań petrograficznych J. Kamieńskiego i A. N. Viktorova bazalty te można określić jako plagioklazowe bazalty bezoliwowo.

Przez obszar Polski przebiega południowy fragment łuku bazaltowego. We fragmencie tego łuku, obejmującym Sudety Zachodnie, Z. Śliwa wyróżnił 314 wystąpień bazaltów. Są wśród nich 44 kominy wulkaniczne, 18 kominów wulkanicznych z fragmentami potoków bazaltowych, 156 żył bazaltowych, 4 żyły z fragmentami potoków, 89 fragmentów potoków i 3 samodzielne wystąpienia materiałów piroklastycznych. Na ob-

8 M. Kamieński, Bazalty wołyńskie, „Kosmos”, LV, 1929, s. 675—699.
9 A. N. Viktorov, Formy zalegania bazalta na kar’jenie „Ianovaja dolina”, „Sovetskaja Geologia”, XI, 1940.
szarze Dolnego Śląska spotykamy bazalty plagioklazowe, plagioklazowo-nefelinowe (bazanity i tefryty), plagioklazowe ze szkliwem, ubogie w krzemionkę (bazanitoidy i tefroidy), nefelinowe (nefelinity), limburgity (w których szkliwo dominuje nad plagioklazem i nefelinem) oraz ankarastryty (bazalty piroksenowe) 11.

Szczegółowe charakterystyki rozpoznanych surowców, uzyskane dzięki zastosowaniu metody mikroskopowej analizy płytek cienkich i analizy mikrometrycznej, skłonili autorów do podjęcia próby dokładniejszego określenia pochodzenia skał zaliczonych do importów; w kilku najbardziej sprzyjających przypadkach dążylo do zsynchronizowania danej próbki surowcowej z określonym złożem skalnym. Zaoferowano przy tym, że lokalizacja pierwotnego złoża na podstawie próbk surowcowej, pobranej z narzędzia, możliwa jest jedynie wówczas, gdy dany surowiec spełnia poniższe warunki 14: a) poszczególne złoża badanego surowca różnią się między sobą wyraźnymi cechami petrograficznymi, co umożliwia dokładne określenie pochodzenia danej próbki; b) surowiec ten nie występuje w większych ilościach w materiale narzutowym; c) dany surowiec przeżywa swymi walorami użytkowymi (tj. własnościami technicznymi) miejscowe skały narzutowe, co uzasadniało jego import na teren Niżu; d) wysoka frekwencja narzędzi wykonanych z tego surowca w ogólnym zbiornie narzędzi neolitycznych z terenu Niżu, dowodząca masowego charakteru importu. Jedynym surowcem w neolicie Polski środkowozachodniej, jaki spełniałby te warunki, jest bazalt.

Porównanie wyników analiz mikrometrycznych dwóch próbek narzędzi kamiennych z danymi dla 23 wystąpień bazaltów w Sudetach Zachodnich zwróciło uwagę na 4 wystąpienia w rejonie Lubania Śląskiego, woj. jeleniogórskie: Wieża koło Gryfowa (B-88), Leśna (B-76), Baranów (B-80) i Grabiszyce (B-81; tab. 5). Proporcje składu objętościowego i wykształcenie poszczególnych składników wskazują na daleko posunięte podejście Rozpatrując zagadnienie form geologicznych tych wystąpień,
należy podkreślić, że jedynie okolice Leśnej stanowią rozległą pokrywę bazaltową, która w morfologii terenu zaznacza się w postaci wysoczyn wydłużonej w kierunku północ-południe 15. Wysoczynna ta ma charakter płaskowyżu, na którym występują trzy kulminacje — Perkun (402 m n.p.m.) i Wysoka Stróża, znana też jako Światowit (427,8 m n.p.m.) — będące kominami wulkanicznymi oraz wzniesienie bez nazwy na zachód od Perkuna. Istniały tu więc praktyczne możliwości eksploatowania surowca bazaltowego. Takie fakty, jak forma geologiczna złoża, zasoby surowca, łatwość jego odszukania a także dostępność na powierzchni, wskazują, że przesłanki teoretyczne znajdują w przypadku Leśnej praktyczne potwierdzenie. W odniesieniu do trzech pozostałych wystąpień z okolic Lubania Śląskiego autorzy nie dysponują tak szczegółowymi danymi. Żywłowa forma tych złoża wskazuje jednak na teoretycznie mniejsze możliwości ich eksploatacji.

Table 5
Porównanie ilościowego składu mineralnego wybranych wystąpień bazaltów w Sudetach Zachodnich (wg Z. Sliwy) 16 ze składem próbek z neolitycznych narzędzi bazaltowych

<table>
<thead>
<tr>
<th>Minerały</th>
<th>Numer próby</th>
<th>Wystąpienia w Sudetach Zachodnich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Plagioklaz</td>
<td>57,374</td>
<td>35,687</td>
</tr>
<tr>
<td>Nefelin</td>
<td>3,087</td>
<td>6,780</td>
</tr>
<tr>
<td>Piroksen</td>
<td>19,151</td>
<td>37,665</td>
</tr>
<tr>
<td>Magnetyt</td>
<td>8,617</td>
<td>14,877</td>
</tr>
<tr>
<td>Oliwin i iddyngsyt</td>
<td>11,771</td>
<td>4,614</td>
</tr>
<tr>
<td>Szkliwo</td>
<td>—</td>
<td>0,377</td>
</tr>
<tr>
<td>Seladonit</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Serpentyn</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Stosowany zakres metod petrograficznych nie jest pełny, stąd też na razie tylko ogólnie można stwierdzić, że surowiec bazaltowy z Sudetów Zachodnich niewątpliwie transportowany był w epoce neolitu w rejon Wielkopolski. Świadczą o tym przytoczone powyżej argumenty petrograficzne, tzn. przede wszystkim zbieżność proporcji objętościowych, szczegóły dotyczące augitów, iddyngsytyzacji oliwinów, form występowania tlenków żelaza, szkliwa, kalcytu itd., jak również brak złoż bazaltów plagioklazowo-nefelinowych w Skanii i na Wołyniu. Należy przy tym pamiętać, że neolityczne źródła wydobycia bazaltów niekoniecznie muszą leżeć wyłącznie na terenie Polski, lecz mogą znajdować się również w Czechosłowacji, NRD, a nawet na terenach położonych dalej na zachód.

16 Tegoż, Wybrane zagadnienia.
Szersza charakterystyka napływu surowca bazaltowego na teren Nizu w neolicie nie jest jeszcze możliwa. Przypuszczalnie główną przyczyną uprawiania działalności gospodarczej tego rodzaju było to, że bazalt zdecydowanie górował swymi własnościami technicznymi nad wszystkimi surowcami eratycznymi, jakie dostępne były na Nizu. Jak wykazała szczegółowa analiza procesu produkcji kamiennych narzędzi gładzonych, za najbardziej pożądane cechy użytkowe, decydujące o doborze rodzaju skały, neolityczni kamieniarze uważali najpewdopodobniej: dużą szczelność (tj. minimalną porowatość) i związaną z nią niską nasiąkliwość, zapewniającą znaczną odporność na działanie mrozu i wietrzenie; wysoki ciężar właściwy, pozwalający uzyskać dużą siłę uderzenia przy ograniczonych rozmiarach narzędzia; dobrą łupliwość (ułatwiającą obróbkę surowca) oraz stosunkowo dużą zwięzłość (ze względu na trwałość wyrobu), nie tak znaczną jednak, by utrudniało to obróbkę. Bazalt posiada wszystkie pozytywne zalety, dzięki którym spośród wszystkich skał używanych w neolicie Nizu Polskiego do wyrobu narzędzi jest on najbardziej zbliżony do idealnego, wzorowego surowca. Decydowało to o jego atrakcyjności, podobnie jak znacznego oddalenia złoża. Odległość między przypuszczalnym miejscem wydobycia zbadanych bazaltów (okolice Lubania Śląskiego) a miejscami znalezienia narzędzi wykonanych z tego surowca (Kuźnica Czarnkowska i Czeszewo, woj. pilskie) wynosi ok. 250 km. Zgromadzone przez autorów masowe oznaczenia makroskopowe narzędzi kamiennych z Polski środkowoeuropejskie pozwalają określić ogólne proporcje napływu surowca bazaltowego na teren Nizu. Udział bazaltu w całym zbiorze narzędzi neolitycznych wynosi 12,4%, w tym: wśród narzędzi cyklu wstęgowego — 9,1%, kultury pucharów lejkowatych — 11,5%, kultury ceramicznej sznurowej — 16,5%, grup „episygnirowych” z przełomu neolitu i wczesnej epoki brązu — 16,3%, a wśród narzędzi neolitycznych o bliżej niespecyficznej przyznaleści chronologiczno-kulturowej — 12,6%. Uzgadniając brak względnie, zdaniem innych autorów, minimalny znaleziono udział bazaltu w materiałach eratycznym można w przybliżeniu przyjąć, że wszystkie bazaltowe narzędzia neolityczne, znajdowane na terenie Nizu, wykonane zostały z importowanego surowca pochodzenia południowego. Jeżeli to założenie jest słuszne, neolityczny import bazaltu należałoby uznać za masowy i długotrwały, bo obejmujący, w niezbyt

17 Prinke, Skoczyłas, op. cit.
18 Ibidem.
20 Według uprzejmej informacji p. dr Janiny Nunberg z Zakładu Nauk Geologicznych PAN w Warszawie, której autorzy składają w tym miejscu serdeczne podziękowanie.
L'importation néolithique du basalte en territoire de la Pologne occidentale

Résumé. L'article présente les premières données concernant l'apparition dans une partie de la Pologne occidentale d'artefacts néolithiques lisses fabriqués de basaltes provenant des Sudètes Occidentales. Ces informations ont été acquises au cours des recherches pétrographico-archéologiques à longue échéance concernant l'emploi des matières premières en pierre au cours du Néolithique de ce territoire, recherches menées par le Département de l'Époque de Pierre auprès du Musée Archéologique de Poznań en collaboration avec la Chaire de Géologie de l'Université de cette ville. Jusqu'à présent on a rassemblé des dénominations macroscopiques de la matière première pour 1557 outils en pierre; on les a ensuite vérifiés par la méthode microscopique de l'analyse des lames minces (préparations translucides). L'article présente des résultats de l'analyse de 16 lames minces prélevées sur des instruments néolithiques lesquels proviennent du territoire relativement unifié de la Couïavie (Kujawy) et de la partie N.E. de la Grande Pologne (fig. 14). On a classé 11 outils parmi les civilisations du cycle danubien, 1 — parmi la civilisation des gobelets à entonnoir, 1 — parmi les civilisations de la céramique epicordé datant de la transition du Néolithique et de l'époque du bronze; trois objets n'ont pas pu être datés avec précision.

L'analyse microscopique a permis de distinguer 8 amphiboles, 8 basaltes et 2 diabases. Grâce à cette méthode on a obtenu en détail une caractéristique pétrographique de ces matières premières laquelle a servi de base pour fixer leur provenance. La composition des amphiboles et des diabases est une indication de leur caractère erratique. Elles apparaissent sur les grandes étendues de la Plaine Polonaise, grâce à quoi, au cours du Néolithique, elles constituaient une réserve locale de matière première pour la taille de pierres. Quant aux basaltes, on a distingué deux exemplaires de variété plagioclase-néphélinoïde, non connue en Scandinavie, ce qui a permis de les reconnaître comme des importations venues de territoires rocheux de la montagne situés — pour parler sommairement — au Sud du territoire examiné. Ayant à leur disposition des descriptions abondantes, non publiées, concernant l'apparition des basaltes en Sudètes, les auteurs ont entrepris l'essai d'une identification des deux exemplaires de basalte plagioclase-néphélinoïde avec un gisement défini. C'est dans ce but-là qu'on a fait une analyse micrométrique des deux préparations qui a encore précisée leur caractéristique pétrographique.

La comparaison des résultats obtenus avec toutes les données (23) concernant des apparitions dans la région des Sudètes Occidentales de cette variété de basalte ont démontré une convergence frappante avec quatre d'entre elles situées dans la région de Lubnań Śląski. Des possibilités pratiques pour l'exploitation de la matière première n'existaient que dans le cas du gisement de Lesna, lequel possède la forme d'un couvercle étendu, tandis que les autres apparitions ont un caractère veineux.
Les lieux où ont été trouvés les deux exemplaires en question (Kuźnica Czarnkowska et Czeszewo, voïevodie de Pila) sont à une distance d’à peu près 250 km des gisements mentionnés. L'importation de la matière première basaltique peut être motivée avant tout par le fait de sa supériorité sur toutes les matières premières erratiques trouvables sur le territoire de la Plaine Polonaise.

Une caractéristique plus détaillée quant à la durée et à l'intensité de l'importation fraîchement découverte n'est pas encore possible. Nous ne disposons que de données générales au sujet de la participation des basaltes dans l'ensemble des outils néolithiques de la Pologne Occidentale. Elle remonte à 12,4%, à savoir: pour le cycle danubien — 9,1%, pour la civilisation de gobelets à entonnoir — 11,5%, pour la civilisation de la céramique cordé — 16,5%, pour les groupes „épicordés” datant de la transition du Néolithique et de l'époque du bronze — 16,3% et pour les outils néolithiques non datés avec précision — 12,6% 19. Vu le 19 manque ou bien la participation à peine minimale de basaltes parmi le matériel erratique 20, on peut admettre que tous les artefacts en basalte trouvés sur le territoire de la Plaine Polonaise sont le résultat de l'importation venue des gisements primaires. Si ce principe est juste, il foudrait admettre que cette affluence était un phénomène de masse et de longue durée, car elle embrasserait l'ensemble de cette époque.

Traduit par Stefan Stablewski

* Les numéros se rapportent aux notes du texte polonais.